# SRFC Abundance Estimation and Forecasting, Harvest Models

SRFC Workgroup 1/31/24

will.satterthwaite@noaa.gov

- Abundance Estimation (retrospective)
  Abundance Forecasting (preseason)
- Harvest Modeling

# Abundance Estimation (retrospective) Abundance Forecasting (preseason) Harvest Modeling



Relatively straightforward, but how to screen out jacks, non-fall run? Landed (and directed) harvest only, except special case GSI & coho-only How do we know which unmarked fish are adult SRFC?

- Approximates potential escapement in absence of fishing, but...
  - Doesn't account for natural mortality or most non-landed mortality
  - Doesn't account for maturation
  - Blurs cohort boundaries
- Contrast with KRFC-style cohort reconstruction

# Cohort reconstructions for KRFC (&SRWC, etc.)

- Reconstruct hatchery-origin cohorts using CWT data
  - Assume natural mortality rates after age-2
  - Estimate maturation rates, impact rates, and abundance-at-age



River run size at age 5 – sum of sample-expanded tags in hatchery, natural spawning, river harvest

BY+5



1<sub>5</sub>

Ocean fishery impacts at age 5 (recovered tags expanded for sampling, release mortality, dropoff mortality)





















# Cohort reconstructions for KRFC (&SRWC, etc.)

- Reconstruct hatchery-origin cohorts using CWT data
  - Assume natural mortality rates after age-2
  - Estimate maturation rates, impact rates, and abundance-at-age
- "Borrow" age-specific per capita fishery impacts from hatchery-origin cohorts and assume they apply to natural-origin
- Reconstruct natural-origin cohorts using escapement-at-age (based on scales and subtracting off expanded hatchery tags)
  - Borrow fishery impacts
  - Estimate maturation rates and abundance-at-age

<u>Cohort's</u> potential <u>total</u> escapement in absence of fishing

$$\begin{split} & \mathsf{N}_{3,\mathsf{BY},\mathsf{H+N}}*(1\text{-mort})*\mathsf{mat}_{3,\mathsf{combo}} + & (\mathsf{age-3 spawners from cohort}) \\ & \mathsf{N}_{3,\mathsf{BY},\mathsf{H+N}}*(1\text{-mort})*(1\text{-mat}_{3,\mathsf{combo}})*(1\text{-mort})*\mathsf{mat}_{4,\mathsf{combo}} + & (\mathsf{age-4}) \\ & \mathsf{N}_{3,\mathsf{BY},\mathsf{H+N}}*(1\text{-mort})*(1\text{-mat}_{3,\mathsf{c}})*(1\text{-mort})*(1\text{-mat}_{4,\mathsf{c}})*(1\text{-mort})*\mathsf{mat}_{5,\mathsf{c}} + \dots & (\mathsf{age-5}) \\ & (and so on for older ages, if desired) \end{split}$$

<u>Cohort's</u> potential <u>natural-area</u> escapement in absence of fishing

$$\begin{split} & N_{3,BY,NO}*(1\text{-mort})*mat_{3,nat}*(1\text{-stray}_{nat}) + \\ & N_{3,BY,HO}*(1\text{-mort})*mat_{3,hat}*(\text{stray}_{hat}) + & (\text{age-3 spawners from cohort}) \\ & N_{3,BY,NO}*(1\text{-mort})*(1\text{-mat}_{3,nat})*(1\text{-mort})*mat_{4,nat}*(1\text{-stray}_{nat}) + \\ & N_{3,BY,HO}*(1\text{-mort})*(1\text{-mat}_{3,hat})*(1\text{-mort})*mat_{4,hat}*(\text{stray}_{hat}) + & (\text{age-4}) \\ & + \dots \end{split}$$

(and so on for older ages, if desired)

<u>Run year's potential total</u> escapement in absence of fishing

 $N_{3,RY-3}^{*}(1-mort)^{*}(mat_{3}) + N_{4,RY-4}^{*}(1-mort)^{*}mat_{4} + N_{4,RY-4}^{*}(1-mort)^{*}$ 

N<sub>5,RY-5</sub>\*(1-mort)\*mat<sub>5</sub> + ... (and so on for older ages, if desired) (age-3 spawners from RY-3 cohort)(age-4 spawners from RY-4 cohort)(age-5 spawners from RY-4 cohort)

Abundance Estimation (retrospective)
Abundance Forecasting (preseason)
Harvest Modeling

Jack escapement last year as predictor of this year's pre-fishing abundance



Jack escapement last voar as prodictor of this voar's pro-fishing abundance



Jack escapement last year as predictor of this year's pro-fishing abundance



Jack escapement last year as predictor of this year's pre-fishing abundance



Jack escapement last year as predictor of this year's pre-fishing abundance arithmetic scale log scale 0 Ο  $\infty$ 1500000 14 00 00 0 8 8 0 °00 Ο 0 0 13 1000000 -• **2020** log(SI) ົວ C 12 0 0 0 500000  $\cap$ o 2020 11 Ο 0 0 11 8 9 20000 40000 60000 80000 0  $log(J_{t-1})$  $J_{t-1}$ divergence from line (not forecast!) last year  $\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \rho \varepsilon_{t-1}$ 

Jack escapement last year as predictor of this year's pre-fishing abundance arithmetic scale log scale Ο  $\infty$ ۍ د ه ه ଚ୍ଚ 1000000 o 2020 log(SI)  $\cap$ ົວ  $\circ \circ$  $\cap$ o 2020 Ο  $log(J_{t-1})$  $J_{t-1}$ 

how temporally autocorrelated deviations from line are

Jack escapement last voar as prodictor of this voar's pro-fishing abundance



Jack escapement last year as predictor of this year's pre-fishing abundance log scale arithmetic scale Ο  $\infty$ °00 ଚ୍ଚ 1000000 o 2020 log(SI)  $\cap$ ົວ Ο  $\cap$ o 2020 Ο  $log(J_{t-1})$  $J_{t-1}$ used for 2021 forecast (but there was another step to put it on arithmetic scale)  $\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \rho \varepsilon_{t-1}$ 

## Final step in SI forecast

- Through 2022:  $SI_t = e^{\log SI_t + \frac{1}{2}\sigma^2}$ 
  - The  $\frac{+\frac{1}{2}\sigma^2}{2}$  was to preserve the mean when going from logarithmic to arithmetic scales
- Starting in 2023:  $SI_t = e^{\log SI_t}$ 
  - This preserves the median
  - Lots of math, SSC and STT concurred that preserving median was preferable, see <u>https://www.pcouncil.org/documents/2022/10/d-2-attachment-1-</u> <u>methodology-review-materials-electronic-only.pdf#page=31/</u> for details

# SI forecast performance (current method applied retrospectively)



Preseason forecast (thousands)

#### Alternative SI forecast methods considered

**Table 2.** Alternative models for forecasting the Sacramento Index (SI) as a function of the number of jacks the previous 2 years and the environment the previous year.

| Model                                 | Formula                                                                                                     | Error structure                                                              | Model selection  | Selected terms $(X_i)$                       |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|----------------------------------------------|
| 1                                     | $SI_t = \beta_0 + \epsilon_t$                                                                               | $oldsymbol{\epsilon}_t \sim \mathrm{N} \left( 0,  \sigma^2  ight)$           | None             |                                              |
| 2                                     | $SI_t = \beta_1 J_{t-1} + \epsilon_t$                                                                       | $\epsilon_{t} \sim \mathrm{N} \left( 0,  \sigma^{2} J_{t-1}  ight)$          | None             |                                              |
| 3                                     | $SI_t = \beta_1 J_{t-1} + \beta_2 J_{t-2} + \epsilon_t$                                                     | $\epsilon_{t} \sim \mathrm{N}$ (0, $\sigma^{2}J_{t-1}$ )                     | None             |                                              |
| <b>4</b> <sup><i>a</i>,<i>b</i></sup> | $\mathrm{SI}_t = f_{1(3)}(t)J_{t-1} + \epsilon_t$                                                           | $\epsilon_t \sim \mathrm{N}$ (0, $\sigma^2 J_{t-1}$ )                        | None             |                                              |
| 5                                     | $	ext{SI}_t = eta_1 J_{t-1} + \sum eta_i X_i + eta_t$                                                       | $\epsilon_t \sim \mathrm{N}$ (0, $\sigma^2 J_{t-1}$ )                        | AIC <sub>c</sub> | $J_{t-2}, J_{t-1} \times E_{j,t-1}$          |
| 6                                     | $\log SI_t = \beta_0 + \epsilon_t^{i}$                                                                      | $\epsilon_t \sim { m N}$ (0, $\sigma^2$ )                                    | None             |                                              |
| 7                                     | $\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \epsilon_t$                                                   | $\epsilon_{ m t} \sim { m N}$ (0, $\sigma^2$ )                               | None             |                                              |
| 8 <sup>c</sup>                        | $\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \epsilon_t$                                                   | $\epsilon_t$ = $ ho\epsilon_{t-1}$ + $v_t$ , $v_t$ $\sim$ N (0, $\sigma^2$ ) | None             |                                              |
| 9                                     | $\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \beta_2 \log J_{t-2} + \epsilon_t$                            | $\epsilon_{ m t} \sim { m N}$ (0, $\sigma^2$ )                               | None             |                                              |
| <b>10</b> <sup>a</sup>                | $\log SI_{t} = \beta_{0} + \beta_{1} \log J_{t-1} + f_{1(2)}(t) + \epsilon_{t}$                             | $\epsilon_{ m t} \sim { m N}$ (0, $\sigma^2$ )                               | None             |                                              |
| 11                                    | $\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \sum_i \beta_i X_i + \epsilon_t$                              | $\epsilon_{ m t} \sim { m N}$ (0, $\sigma^2$ )                               | AIC <sub>c</sub> | $\log J_{t-2}, E_{j,t-1}$                    |
| 12 <sup>a</sup>                       | $\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \Sigma_i X_i + \epsilon_t$                                    | $\epsilon_t \sim \mathrm{N}$ (0, $\sigma^2$ )                                | AIC <sub>c</sub> | $\beta_2 \log J_{t-2}, f_{j(2)} (E_{j,t-1})$ |
| 13 <sup>d</sup>                       | $\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \beta_2 \log J_{t-2} + \sum_i \beta_i E_{i,t-1} + \epsilon_t$ | $\epsilon_{ m t} \sim { m N}$ (0, $\sigma^2$ )                               | None             | 8 G U 200                                    |

Note: Model 2 is the model used in fishery management to forecast the SI. Model variables, parameters, and terms are defined as follows:  $J_t$ , jacks in year t;  $E_{i,t}$ , environmental variable i in year t;  $\beta_i$ , model intercept ( $\beta_0$ ) and coefficients;  $f_{i(n)}(X_i)$ , smooth function of variable  $X_i$  with cubic spline basis and maximum n degrees of freedom;  $\epsilon_t$ , SI residual for year t;  $\rho$ , first-order temporal autocorrelation in SI residuals;  $v_t$ , stochastic error for year t; and  $\sigma^2$ , error variance. "Selected terms", symbolized by  $X_i$  in the "Formula" column, are terms whose inclusion in the corresponding model was subject to model selection.

<sup>a</sup>Generalized additive model fit with "mgcv" package (Wood 2006) for R (R Core Team 2013).

<sup>b</sup>Varying coefficient model (Wood 2006).

<sup>c</sup>First-order autoregressive error structure fit with "arima" function in R (R Core Team 2013).

<sup>d</sup>Partial least squares regression model fit with "pls" package (Mevik and Wehrens 2007) for R (R Core Team 2013); data were centered and scaled.

Winship et al. 2015, dx.doi.org/10.1139/cjfas-2014-0247

# KRFC forecasting approach



FIGURE II-3. Regression estimators for Klamath River fall Chinook ocean abundance (September 1) based on that year's river return of same cohort. Numbers in plots denote brood years.

• Based on evidence for changing maturation rates through time, KRFC forecast now uses data from 10 most recent cohorts only

- Abundance Estimation (retrospective)
  Abundance Forecasting (preseason)
- Harvest Modeling

## Sacramento Harvest Model (SHM)

• Predicts harvest/impacts for each area-month-sector stratum

# Sacramento Harvest Model (SHM)

- Predicts harvest/impacts for each area-month-sector stratum
- For quota  $(Q^k)$  fisheries (<u>historically</u> rare in SRFC areas), predicted harvest =  $Q^{k*p}$  for that area-month-sector where p = proportion of catch that is SFC
  - harvest rate = harvest/SI
  - Requires prediction of *p* and forecast of SI

## Modeling proportion of catch that is SRFC (p)

 $p = \operatorname{average}\{\tilde{p}\},\tag{13}$ 

where the average is taken over the period 1983–forward, and  $\tilde{p}$  is a given year's proportion of SRFC in the harvest adjusted for each stock unit's current year ocean abundance forecast,  $A_g^*$ , relative to its estimated ocean abundance at the time,  $A_g$ :

$$\tilde{p} = \frac{H_{o,S}\left(A_S^*/A_S\right)}{\sum_g H_{o,g}\left(A_g^*/A_g\right)},\tag{14}$$

where  $H_{o,g}$  is the harvest of stock unit g, and the sum is over g = S, K, V, N.  $A_S^*$  is the forecast SI and  $A_K^*$  is the aggregate-age ocean abundance forecast for Klamath River fall Chinook. The  $A_S^*$  and  $A_K^*$  forecasts and the time series of  $\{A_S\}$  and  $\{A_K\}$  estimates are provided in PFMC (2013a). Forecasts of  $A_V^*$  and  $A_N^*$  and the time series of  $\{A_V\}$  and  $\{A_N\}$  estimates are produced and maintained by the California Department of Fish and Wildlife, Ocean Salmon Project, as part of the annual stock assessment process.

# Sacramento Harvest Model (SHM)

- Predicts harvest/impacts for each area-month-sector stratum
- For quota (Q<sup>k</sup>) fisheries (<u>historically</u> rare in SRFC areas), predicted harvest = Q<sup>k</sup>\*p for that area-month-sector where p = proportion of catch that is SFC
  - harvest rate = harvest/SI
  - Requires prediction of *p* and forecast of SI
- For days-open fisheries, predicted harvest rate = harvest rate per unit effort (β<sup>hf</sup>) \* effort (f)
  - Effort (f) = effort per day open ( $\beta^{fD}$ ) \* Days open ( $D^k$ )
  - Requires prediction/estimate of both  $\beta$  terms

# Modeling harvest rate per unit effort ( $\beta^{hf}$ )



**Figure 5.** Commercial sector SRFC harvest rates plotted as a function of fishing effort by management area and month. Effort estimates are in units of vessel days. Line slope is estimated average harvest rate per unit of effort.

# Modeling effort per day open ( $\beta^{fD}$ )



**Figure 3.** Commercial sector fishing effort plotted as a function of days open to fishing by management area and month. Effort is in vessel day units. See text for description of symbols, lines, and color coding.

# Sacramento Harvest Model (SHM)

- Predicts harvest/impacts for each area-month-sector stratum
- For quota (Q<sup>k</sup>) fisheries (<u>historically</u> rare in SRFC areas), predicted harvest = Q<sup>k</sup>\*p for that area-month-sector where p = proportion of catch that is SFC
  - harvest rate = harvest/SI
  - Requires prediction of *p* and forecast of SI
- For days-open fisheries, predicted harvest rate = harvest rate per unit effort (β<sup>hf</sup>) \* effort (f)
  - Effort (f) = effort per day open ( $\beta^{fD}$ ) \* Days open ( $D^k$ )
  - Requires prediction/estimate of both  $\beta$  terms
- For non-retention fisheries, similar calculations but discounted by release mortality (s)
- Overall harvest/impact rate prediction is obtained by summing across strata

# Potential areas of improvement

- Better estimation of age and origin of unmarked fish
- Account for age structure within the "adult" class
- Account for nonlanded mortality, natural mortality
- Model escapement by origin and/or location
- Abundance forecast refinements
- Harvest model refinements
- Need for increased attention to modeling quota fisheries?
  - New California Coastal Chinook standard will introduce caps, not strictly quotas
- Account for uncertainty in forecast, harvest projections