SRFC Abundance Estimation and Forecasting, Harvest Models

SRFC Workgroup 1/31/24

will.satterthwaite@noaa.gov

- Abundance Estimation (retrospective)
- Abundance Forecasting (preseason)
- Harvest Modeling
- Abundance Estimation (retrospective)
- Abundance Forecasting (preseason)
- Harvest Modeling
- Annual index of abundance of "adult" SRFC, hatchery+natural
- SI= Escapement + River Harvest + Ocean Harvest

- Approximates potential escapement in absence of fishing, but...
- Doesn't account for natural mortality or most non-landed mortality
- Doesn't account for maturation
- Blurs cohort boundaries
- Contrast with KRFC-style cohort reconstruction

Cohort reconstructions for KRFC (\&SRWC, etc.)

- Reconstruct hatchery-origin cohorts using CWT data
- Assume natural mortality rates after age-2
- Estimate maturation rates, impact rates, and abundance-at-age

River run size at age 5 - sum of sample-expanded tags in hatchery, natural spawning, river harvest
$\mathrm{BY}+5$
Adjust upward by assumed intervening subadult natural mortality, sum together
N_{5} Ocean abundance on $5^{\text {th }}$ birthday

River run size and ocean impacts estimated like before

Age 4 maturation rate $=\mathrm{R}_{4} /\left(\mathrm{N}_{4}-\mathrm{I}_{4}\right)$ (roughly)
actually use final-month N incorporating natural mortality, rather than starting month N Age 4 ocean fishery impact rate $=I_{4} / N_{4}$

Age 3 maturation rate $=\mathrm{R}_{3} /\left(\mathrm{N}_{3}-\mathrm{I}_{3}\right)$ (roughly)
actually use final-month N incorporating natural mortality, rather than starting month N Age 3 ocean fishery impact rate $=I_{3} / N_{3}$

Age 2 maturation rate $=\mathrm{R}_{2} /\left(\mathrm{N}_{2}-\mathrm{I}_{2}\right)$ (roughly)

actually use final-month N incorporating natural mortality, rather than starting month N Age 2 ocean fishery impact rate $=I_{2} / \mathrm{N}_{2}$

Cohort reconstructions for KRFC (\&SRWC, etc.)

- Reconstruct hatchery-origin cohorts using CWT data
- Assume natural mortality rates after age-2
- Estimate maturation rates, impact rates, and abundance-at-age
- "Borrow" age-specific per capita fishery impacts from hatchery-origin cohorts and assume they apply to natural-origin
- Reconstruct natural-origin cohorts using escapement-at-age (based on scales and subtracting off expanded hatchery tags)
- Borrow fishery impacts
- Estimate maturation rates and abundance-at-age

Cohort's potential total escapement in absence of

 fishing```
N (,BY,H+N
(age-3 spawners from cohort)
N (,B,H+N
N (,B,H+N
(and so on for older ages, if desired)
```


## Cohort's potential natural-area escapement in absence of fishing

$\mathrm{N}_{3, \mathrm{Br}, \mathrm{NO}}{ }^{*}(1-\mathrm{mort}) *$ mat $_{3, \text { nat }}{ }^{*}\left(1-\right.$ stray $\left._{\text {nat }}\right)+$
$\mathrm{N}_{3, \text { Bу,но }} *(1-\mathrm{mort}) *$ mat $_{3, \text { hat }} *\left(\right.$ stray $\left._{\text {hat }}\right)+$
(age-3 spawners from cohort)
$\mathrm{N}_{3, \mathrm{BY}, \mathrm{NO}}{ }^{*}(1-\mathrm{mort})^{*}\left(1-\text { mat }_{3, \text { nat }}\right)^{*}(1-\mathrm{mort})^{*}$ mat $_{4, \text { nat }}{ }^{*}\left(1-\right.$ stray $\left._{\text {nat }}\right)+$
$\mathrm{N}_{3, \text { ВУ,но }}{ }^{*}(1-\mathrm{mort}) *\left(1-\mathrm{mat}_{3, \text { hat }}\right) *(1-\mathrm{mort}){ }^{*}$ mat $_{4, \text { hat }}{ }^{*}\left(\right.$ stray $\left._{\text {hat }}\right)+\quad$ (age-4)
$+\ldots$
(and so on for older ages, if desired)

Run year's potential total escapement in absence of fishing

$$
\begin{aligned}
& \mathrm{N}_{3, \mathrm{RY}-3} *(1-\mathrm{mort}) *\left(\mathrm{mat}_{3}\right)+ \\
& \mathrm{N}_{4, \mathrm{RY}-4}{ }^{*}(1-\mathrm{mort}) * \mathrm{mat}_{4}+ \\
& \mathrm{N}_{5, \mathrm{RY-5}}{ }^{*}(1-\mathrm{mort}) * \mathrm{mat}_{5}+\ldots \\
& \text { (and so on for older ages, if desired) }
\end{aligned}
$$

(age-3 spawners from RY-3 cohort)
(age-4 spawners from RY-4 cohort)
(age-5 spawners from RY-4 cohort)

- Abundance Estimation (retrospective)
- Abundance Forecasting (preseason)
-Harvest Modeling


## How the SI forecast works

Jack escapement last year as predictor of this year's pre-fishing abundance
log scale

arithmetic scale

$\log S I_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\rho \varepsilon_{t-1}$

## How the SI forecast works


log scale

arithmetic scale

$\log S I_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\rho \varepsilon_{t-1}$

## How the SI forecast works


log scale

sets intercept (not shown directly)
$\log S I_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\rho \varepsilon_{t-1}$

## How the SI forecast works

Jack escapement last year as predictor of this year's pre-fishing abundance
log scale

$\log S I_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\rho \varepsilon_{t-1}$
arithmetic scale


## How the SI forecast works

Jack escapement last year as predictor of this year's pre-fishing abundance
log scale

divergence from line (not forecast!) last year
$\log S I_{t}=\beta_{0}+\beta_{1} \log g_{t-1}+\rho \varepsilon_{t-1}$

## How the SI forecast works

Jack escapement last year as predictor of this year's pre-fishing abundance
log scale

arithmetic scale

how temporally autocorrelated deviations from line are
$\log S I_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\boldsymbol{\rho} \varepsilon_{t-1}$

## How the SI forecast works



$\log S I_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\rho \varepsilon_{t-1}$

## How the SI forecast works

Jack escapement last year as predictor of this year's pre-fishing abundance
log scale


## Final step in SI forecast

- Through 2022: $S I_{t}=e^{\log S I_{t}+\frac{1}{2} \sigma^{2}}$
- The ${ }^{+\frac{1}{2} \sigma^{2}}$ was to preserve the mean when going from logarithmic to arithmetic scales
- Starting in 2023: $S I_{t}=e^{\text {logSI }_{t}}$
- This preserves the median
- Lots of math, SSC and STT concurred that preserving median was preferable, see https://www.pcouncil.org/documents/2022/10/d-2-attachment-1-methodology-review-materials-electronic-only.pdf\#page=31/for details


## SI forecast performance

(current method applied retrospectively)


## Alternative SI forecast methods considered

Table 2. Alternative models for forecasting the Sacramento Index (SI) as a function of the number of jacks the previous 2 years and the environment the previous year.

| Model | Formula | Error structure | Model <br> selection |
| :--- | :--- | :--- | :--- |
| 1 | $\mathrm{SI}_{t}=\beta_{0}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | None |
| 2 | $\mathrm{SI}_{t}=\beta_{1} J_{t-1}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2} J_{t-1}\right)$ | None |
| 3 | $\mathrm{SI}_{t}=\beta_{1} J_{t-1}+\beta_{2} J_{t-2}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2} J_{t-1}\right)$ | None terms $\left(X_{i}\right)$ |
| $4^{a, b}$ | $\mathrm{SI}_{t}=f_{1(3)}(t) J_{t-1}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2} J_{t-1}\right)$ | None |
| 5 | $\mathrm{SI}_{t}=\beta_{1} J_{t-1}+\sum_{i} \beta_{i} X_{i}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2} J_{t-1}\right)$ | AIC $_{c}$ |
| 6 | $\log \mathrm{SI}_{t}=\beta_{0}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | $J_{t-2}, J_{t-1} \times E_{j, t-1}$ |
| 7 | $\log \mathrm{SI}_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | None |
| $8^{c}$ | $\log \mathrm{SI}_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\epsilon_{t}$ | $\epsilon_{t}=\rho \epsilon_{t-1}+v_{t}, v_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | None |
| 9 | $\log \mathrm{SI}_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\beta_{2} \log J_{t-2}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | None |
| $10^{a}$ | $\log \mathrm{SI}_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+f_{1(2)}(t)+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | None |
| 11 | $\log \mathrm{SI}_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\sum_{i} \beta_{i} X_{i}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | AIC |
| $12^{a}$ | $\log \mathrm{SI}_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\sum_{i} X_{i}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | $\log J_{t-2}, E_{j, t-1}$ |
| $13^{d}$ | $\log \mathrm{SI}_{t}=\beta_{0}+\beta_{1} \log J_{t-1}+\beta_{2} \log J_{t-2}+\sum_{i} \beta_{i} E_{i, t-1}+\epsilon_{t}$ | $\epsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ | AIC |

Note: Model 2 is the model used in fishery management to forecast the SI. Model variables, parameters, and terms are defined as follows: $J_{t}$, jacks in year $t ; E_{i, t}$, environmental variable $i$ in year $t ; \beta_{i}$, model intercept $\left(\beta_{0}\right)$ and coefficients; $f_{i(n)}\left(X_{i}\right)$, smooth function of variable $X_{i}$ with cubic spline basis and maximum $n$ degrees of freedom; $\epsilon_{t}$, SI residual for year $t ; \rho$, first-order temporal autocorrelation in SI residuals; $v_{t}$, stochastic error for year $t$; and $\sigma^{2}$, error variance. "Selected terms", symbolized by $X_{i}$ in the "Formula" column, are terms whose inclusion in the corresponding model was subject to model selection.
${ }^{a}$ Generalized additive model fit with "mgcv" package (Wood 2006) for R (R Core Team 2013).
${ }^{b}$ Varying coefficient model (Wood 2006).
${ }^{c}$ First-order autoregressive error structure fit with "arima" function in R (R Core Team 2013).
${ }^{d}$ Partial least squares regression model fit with "pls" package (Mevik and Wehrens 2007) for R (R Core Team 2013); data were centered and scaled.

## KRFC forecasting approach



FIGURE II-3. Regression estimators for Klamath River fall Chinook ocean abundance (September 1) based on that year's river return of same cohort. Numbers in plots denote brood years.

- Based on evidence for changing maturation rates through time, KRFC forecast now uses data from 10 most recent cohorts only
- Abundance Estimation (retrospective)
- Abundance Forecasting (preseason)
- Harvest Modeling


## Sacramento Harvest Model (SHM)

- Predicts harvest/impacts for each area-month-sector stratum


## Sacramento Harvest Model (SHM)

- Predicts harvest/impacts for each area-month-sector stratum
- For quota $\left(Q^{k}\right)$ fisheries (historically rare in SRFC areas), predicted harvest = $Q^{k *} p$ for that area-month-sector where $p=$ proportion of catch that is SFC
- harvest rate = harvest/SI
- Requires prediction of $p$ and forecast of SI


## Modeling proportion of catch that is SRFC $(p)$

$$
\begin{equation*}
p=\operatorname{average}\{\tilde{p}\}, \tag{13}
\end{equation*}
$$

where the average is taken over the period 1983-forward, and $\tilde{p}$ is a given year's proportion of SRFC in the harvest adjusted for each stock unit's current year ocean abundance forecast, $A_{g}^{*}$, relative to its estimated ocean abundance at the time, $A_{g}$ :

$$
\begin{equation*}
\tilde{p}=\frac{H_{o, S}\left(A_{S}^{*} / A_{S}\right)}{\sum_{g} H_{o, g}\left(A_{g}^{*} / A_{g}\right)}, \tag{14}
\end{equation*}
$$

where $H_{o, g}$ is the harvest of stock unit $g$, and the sum is over $g=S, K, V, N . A_{S}^{*}$ is the forecast $S I$ and $A_{K}^{*}$ is the aggregate-age ocean abundance forecast for Klamath River fall Chinook. The $A_{S}^{*}$ and $A_{K}^{*}$ forecasts and the time series of $\left\{A_{S}\right\}$ and $\left\{A_{K}\right\}$ estimates are provided in PFMC (2013a). Forecasts of $A_{V}^{*}$ and $A_{N}^{*}$ and the time series of $\left\{A_{V}\right\}$ and $\left\{A_{N}\right\}$ estimates are produced and maintained by the California Department of Fish and Wildlife, Ocean Salmon Project, as part of the annual stock assessment process.

## Sacramento Harvest Model (SHM)

- Predicts harvest/impacts for each area-month-sector stratum
- For quota $\left(Q^{k}\right)$ fisheries (historically rare in SRFC areas), predicted harvest = $Q^{k *} p$ for that area-month-sector where $\mathrm{p}=$ proportion of catch that is SFC
- harvest rate = harvest/s।
- Requires prediction of $p$ and forecast of SI
- For days-open fisheries, predicted harvest rate = harvest rate per unit effort ( $\beta^{h f}$ ) * effort ( $f$ )
- Effort $(f)=$ effort per day open $\left(\beta^{f D}\right) *$ Days open $\left(D^{k}\right)$
- Requires prediction/estimate of both $\beta$ terms


## Modeling harvest rate per unit effort ( $\beta^{h f}$ )

|  | Jan |
| :---: | :---: |
| $\stackrel{\text { N }}{\text { た }}$ |  |
|  |  |
| $\bigcirc$ |  |
| ふ |  |
| ® |  |

Mar
$\square$



Jul Aug















Figure 5. Commercial sector SRFC harvest rates plotted as a function of fishing effort by management area and month. Effort estimates are in units of vessel days. Line slope is estimated average harvest rate per unit of effort.

## Modeling effort per aqyopen $\left.\boldsymbol{H}^{f} \boldsymbol{f}\right)$


Mar















Days open

Figure 3. Commercial sector fishing effort plotted as a function of days open to fishing by management area and month. Effort is in vessel day units. See text for description of symbols, lines, and color coding.

## Sacramento Harvest Model (SHM)

- Predicts harvest/impacts for each area-month-sector stratum
- For quota $\left(Q^{k}\right)$ fisheries (historically rare in SRFC areas), predicted harvest = $Q^{k *} p$ for that area-month-sector where $\mathrm{p}=$ proportion of catch that is SFC
- harvest rate = harvest/s।
- Requires prediction of $p$ and forecast of SI
- For days-open fisheries, predicted harvest rate = harvest rate per unit effort ( $\beta^{h f}$ ) * effort ( $f$ )
- Effort $(f)=$ effort per day open $\left(\beta^{f D}\right) *$ Days open $\left(D^{k}\right)$
- Requires prediction/estimate of both $\beta$ terms
- For non-retention fisheries, similar calculations but discounted by release mortality (s)
- Overall harvest/impact rate prediction is obtained by summing across strata


## Potential areas of improvement

- Better estimation of age and origin of unmarked fish
- Account for age structure within the "adult" class
- Account for nonlanded mortality, natural mortality
- Model escapement by origin and/or location
- Abundance forecast refinements
- Harvest model refinements
- Need for increased attention to modeling quota fisheries?
- New California Coastal Chinook standard will introduce caps, not strictly quotas
- Account for uncertainty in forecast, harvest projections

